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Resumo: We consider dynamical systems generated by a scalar semilin-
ear parabolic equation. We consider a recently introduced class known as
slowly non-dissipative systems [1], which comprises those with existence of
solutions whose norms grow-up to infinity with time. When dealing with
slowly non-dissipative systems, the existence of unbounded solutions, which
are referred to as grow-up solutions, requires the introduction of some ob-
jects at infinity interpreted as equilibria at infinity. Moreover, the existence
of these solutions yields a more complex orbit structure on the attractor
than that appearing on dissipative systems. By extending known results,
we obtain the existence and a description of a non-compact global attrac-
tor. Also, it is well known that there exists a permutation, introduced in
[2], associated with dissipative systems that determines many of the main
geometric features of the global attractor. For non-dissipative systems, the
existence of equilibria at infinity add some significant challenges to obtain
a similar permutation determining the heteroclinic connections on the non-
compact global attractor. Under this setting, we still manage to determine
the heteroclinic connections based on the Sturm permutation method. This
provides a simpler criterion for describing the non-compact global attractor
and generalize the results obtained for dissipative equation.
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