Sets of Parter Vertices which are Parter Sets

Rosário Fernandes CELC / FCT-UNL e-mail: mrff@fct.unl.pt Henrique F. da Cruz (jointed work)

Resumo: Let G = (X, U) be a tree (connected graph without cycles), with n vertices x_1, \ldots, x_n . Let $A = [a_{i,j}]$ be a real symmetric matrix associated with G, that is, $a_{ij} \neq 0$, with $i \neq j$, if and only if there is an edge between x_i and x_j .

If $1 \leq i \leq n$, then we denote the principal matrix of A resulting from deletion of row and column *i* by A(i). Note that A(i) is a direct sum whose summands we call blocks and correspond to components of $G - x_i$. We denote the multiplicity of $\lambda \in \mathbb{R}$ as an eigenvalue of A by $m_A(\lambda)$.

If $m_A(\lambda) \geq 1$, then the generalization of Parter-Wiener theorem guarantees the existence of a vertex x_i of G for which $m_{A(i)}(\lambda) = m_A(\lambda) + 1$. The vertices of the tree whose removal give rise to these principal submatrices are called weak Parter vertices and with some additional conditions are called Parter vertices. A set of k Parter vertices whose removal increase the multiplicity of λ by k is called Parter set. As observed by several authors a set of Parter vertices is not necessarily a Parter set.

In this talk we show when a set of Parter vertices is a Parter set.

palavras-chave: Parter vertices; Parter set; eigenvalues.

Referências

 R. Fernandes, H.F. da Cruz, "Sets of Parter Vertices which are Parter Sets", *Linear Algebra and its Applications*, Vol.448, (2014), pp. 37-54.